BASF receives funding approval for water electrolysis plant in Germany
With the approval of funding from the German Federal Ministry for Economic Affairs and Climate Action and the State of Rhineland-Palatinate, German materials firm BASF says it has come a major step closer in building a proton exchange membrane electrolyser.
In cooperation with Siemens Energy, work on the water electrolysis at the Ludwigshafen site – the so-called Hy4Chem-EI project – is now entering the next phase of construction.
With an output of 54 megawatts (MW) and a capacity of up to 8,000 metric tonnes/year of hydrogen, the PEM electrolyser will be one of the largest of its kind in Germany once it is operational. Powered using electricity from renewable energy sources, the system will produce CO2-free hydrogen and thereby reduce greenhouse gas emissions at the site by up to 72,000 tonnes/year.
BASF will primarily use this hydrogen as a raw material in the manufacture of products with a reduced carbon footprint. In addition, the company will supply hydrogen for mobility in the Rhine-Neckar Metropolitan Region to support the ramp-up of a hydrogen economy in the area.
BASF and Siemens Energy plan to begin operating the water electrolysis plant in 2025. In cooperation with the State of Rhineland-Palatinate, the German Federal Ministry for Economic Affairs and Climate Protection is contributing up to EUR124.3 million to the project – up to EUR37.3 million of which will be financed by the government of Rhineland-Palatinate.
Dr. Melanie Maas-Brunner, member of the Board of Executive Directors of BASF SE and Site Director Ludwigshafen, said: “In today’s chemical industry, our main need for low-carbon hydrogen is as a raw material. In the long term, it will also become increasingly important for BASF as an energy vector. That is why I am particularly pleased that our politicians have recognized the project’s potential. In Siemens Energy, we also have a partner with outstanding technological expertise at our side. The current funding commitment shows that politics and business are working together to shape the industrial sector’s energy transformation. This is both a milestone on the road to net zero carbon emissions and a sign of the Ludwigshafen site’s capabilities.”
Hydrogen is the starting point for important chemical value chains. At the Ludwigshafen site, the company uses around 250,000 tonnes/year, which are produced by means of steam reforming or occur as coupling products and by-products. Steam reforming, the current conventional production process, generates high CO2 emissions.
Changing the technology for producing hydrogen and using this hydrogen as a raw material for chemical products should significantly reduce BASF’s carbon footprint. In order to drive the ramp-up of the hydrogen economy, BASF is committed to remaining as open as possible toward different technologies for the production of low-emission or emission-free hydrogen. Besides water electrolysis, such options also include methane pyrolysis.
BASF has set itself the target of achieving net zero CO2 emissions by 2050. The use of renewable energies, an increase in energy efficiency in production, and new technologies will support this objective. The Ludwigshafen site has a key role to play: Numerous technologies are being tested and developed at the company’s headquarters with the aim of replacing fossil fuels and using renewable electricity instead. In addition to water electrolysis, examples include the demonstration plant for electrically heated steam cracker furnaces and a methane pyrolysis test plant.