New solar cell material is cheaper and more efficient

A new solar panel material is cheaper while being 20% more efficient.

Some of the most promising solar cells today use light-harvesting films made from perovskites — a group of materials that share a characteristic molecular structure. However, perovskite-based solar cells use expensive “hole-transporting” materials, whose function is to move the positive charges that are generated when light hits the perovskite film.

Publishing in Nature Energy, Ecole Polytechnique Fédérale de Lausanne (EPFL) scientists have now engineered a considerably cheaper hole-transporting material that costs only a fifth of existing ones while keeping the efficiency of the solar cell above 20%.

Researchers led by Mohammad Nazeeruddin at EPFL developed a molecularly engineered hole-transporting material, called FDT, that can bring costs down while keeping efficiency up to competitive levels. Tests showed that the efficiency of FDT rose to 20.2% — higher than the other two, more expensive alternatives. And because FDT can be easily modified, it acts as a blueprint for an entire generation of new low-cost hole-transporting materials.

“The best performing perovskite solar cells use hole transporting materials, which are difficult to make and purify, and are prohibitively expensive, costing over EUR300 per gram preventing market penetration,” says Nazeeruddin. “By comparison, FDT is easy to synthesize and purify, and its cost is estimated to be a fifth of that for existing materials — while matching, and even surpassing their performance.”